Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Insect Biochem Physiol ; 108(3): e21843, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34490676

RESUMO

Gossypol is a toxic sesquiterpene dimer produced by cotton plants which deters herbivory by insects and vertebrates. Two highly reactive aldehyde groups contribute to gossypol toxicity by cross-linking herbivore proteins. We identified another consequence of consuming gossypol in two insect pests of cotton: increased amounts of fatty acid-amino acid conjugates (FACs). Eight different FACs in the feces of larval Helicoverpa armigera and Heliothis virescens increased when larvae consumed artificial diet containing gossypol, but not a gossypol derivative lacking free aldehyde groups (SB-gossypol). FACs are produced by joining plant-derived fatty acids with amino acids of insect origin in the larval midgut tissue by an unknown conjugase, and translocated into the gut lumen by an unknown transporter. FACs are hydrolyzed back into fatty acids and amino acids by an aminoacylase (L-ACY-1) in the gut lumen. The equilibrium level of FACs in the lumen is determined by a balance between conjugation and hydrolysis, which may differ among species. When heterologously expressed, L-ACY-1 of H. armigera but not H. virescens was inhibited by gossypol; consistent with the excretion of more FACs in the feces by H. armigera. FACs are known to benefit the plant host by inducing anti-herbivore defensive responses, and have been hypothesized to benefit the herbivore by acting as a surfactant and increasing nitrogen uptake efficiency. Thus in addition to its direct toxic effects, gossypol may negatively impact insect nitrogen uptake efficiency and amplify the signal used by the plant to elicit release of volatile compounds that attract parasitoids.


Assuntos
Amidoidrolases/metabolismo , Ácidos Graxos/metabolismo , Gossipol/farmacologia , Mariposas , Defesa das Plantas contra Herbivoria , Amidoidrolases/efeitos dos fármacos , Aminoácidos/metabolismo , Animais , Proteínas de Insetos/efeitos dos fármacos , Proteínas de Insetos/metabolismo , Larva/efeitos dos fármacos , Larva/metabolismo , Mariposas/efeitos dos fármacos , Mariposas/metabolismo
2.
Pest Manag Sci ; 77(7): 3325-3332, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33763946

RESUMO

BACKGROUND: The cotton bollworm, Helicoverpa armigera (Hübner), is a damaging insect pest threatening agricultural crops worldwide as a result of its resistance to insecticides. Metabolic resistance to pyrethroid insecticides is conferred by the chimeric P450 enzyme CYP337B3, produced by unequal crossing-over between CYP337B1 and CYP337B2. CYP337B3 is 99.7% similar to CYP337B1 except for the 177 N-terminal amino acids (AAs) containing the substrate recognition site 1 from CYP337B2. Here, we studied the structure-function relationship of CYP337B3 and CYP337B1 to determine the AAs that enable CYP337B3 to efficiently hydroxylate the 4'-carbon position of fenvalerate, which neither CYP337B1 nor CYP337B2 can do. RESULTS: Site-directed mutagenesis showed that the L114F substitution in CYP337B3 reduced its 4'-hydroxylation activity by 89%, but the reciprocal F114L substitution in CYP337B1 increased its 4'-hydroxylation activity to only 49% of the level of CYP337B3. Docking models showed that AA 114 seems to have different functions in CYP337B1 and CYP337B3. Antibodies detected two- to three-fold more CYP337B1 than CYP337B3 in larval cuticle, which along with a 49% 4'-hydroxylation activity increase due to a F114L substitution in vivo might be expected to provide as much protection for the larva against exposure to fenvalerate as CYP337B3. However, CYP337B3 is present at much higher frequencies than CYP337B1-CYP337B2 in most populations, including those recently invading South America. CONCLUSION: The metabolic resistance to pyrethroids in H. armigera has evolved by saltational evolution - by a single mutation, an unequal crossing-over, producing a larger selective advantage than could be attained gradually by stepwise improvement of the parental enzyme. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Inseticidas , Mariposas , Praguicidas , Piretrinas , Animais , Sistema Enzimático do Citocromo P-450/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Larva/genética , Mariposas/genética , Piretrinas/farmacologia
3.
PLoS One ; 13(11): e0197760, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30383872

RESUMO

The cotton bollworm, Helicoverpa armigera (Hübner) is one of the most serious insect pest species to evolve resistance against many insecticides from different chemical classes. This species has evolved resistance to the pyrethroid insecticides across its native range and is becoming a truly global pest after establishing in South America and having been recently recorded in North America. A chimeric cytochrome P450 gene, CYP337B3, has been identified as a resistance mechanism for resistance to fenvalerate and cypermethrin. Here we show that this resistance mechanism is common around the world with at least eight different alleles. It is present in South America and has probably introgressed into its closely related native sibling species, Helicoverpa zea. The different alleles of CYP337B3 are likely to have arisen independently in different geographic locations from selection on existing diversity. The alleles found in Brazil are those most commonly found in Asia, suggesting a potential origin for the incursion of H. armigera into the Americas.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mariposas/genética , Piretrinas/farmacologia , Alelos , Animais , Loci Gênicos , Mariposas/efeitos dos fármacos , Recombinação Genética
4.
Insect Biochem Mol Biol ; 78: 69-77, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27687846

RESUMO

Gossypol is a polyphenolic secondary metabolite produced by cotton plants, which is toxic to many organisms. Gossypol's aldehyde groups are especially reactive, forming Schiff bases with amino acids of proteins and cross-linking them, inhibiting enzyme activities and contributing to toxicity. Very little is known about gossypol's mode of action and its detoxification in cotton-feeding insects that can tolerate certain concentrations of this compound. Here, we tested the toxicity of gossypol and a gossypol derivative lacking free aldehyde groups (SB-gossypol) toward Helicoverpa armigera and Heliothis virescens, two important pests on cotton plants. Larval feeding studies with these two species on artificial diet supplemented with gossypol or SB-gossypol revealed no detectable toxicity of gossypol, when the aldehyde groups were absent. A cytochrome P450 enzyme, CYP6AE14, is upregulated in H. armigera feeding on gossypol, and has been claimed to directly detoxify gossypol. However, using in vitro assays with heterologously expressed CYP6AE14, no metabolites of gossypol were detected, and further studies suggest that gossypol is not a direct substrate of CYP6AE14. Furthermore, larvae feeding on many other plant toxins also upregulate CYP6AE14. Our data demonstrate that the aldehyde groups are critical for the toxicity of gossypol when ingested by H. armigera and H. virescens larvae, and suggest that CYP6AE14 is not directly involved in gossypol metabolism, but may play a role in the general stress response of H. armigera larvae toward plant toxins.


Assuntos
Família 6 do Citocromo P450/genética , Gossipol/metabolismo , Proteínas de Insetos/genética , Larva/metabolismo , Mariposas/metabolismo , Animais , Família 6 do Citocromo P450/metabolismo , Inativação Metabólica , Proteínas de Insetos/metabolismo , Larva/crescimento & desenvolvimento , Mariposas/crescimento & desenvolvimento
5.
Insect Biochem Mol Biol ; 71: 49-57, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26873292

RESUMO

The cotton bollworm Helicoverpa armigera and the tobacco budworm Heliothis virescens are closely related generalist insect herbivores and serious pest species on a number of economically important crop plants including cotton. Even though cotton is well defended by its major defensive compound gossypol, a toxic sesquiterpene dimer, larvae of both species are capable of developing on cotton plants. In spite of severe damage larvae cause on cotton plants, little is known about gossypol detoxification mechanisms in cotton-feeding insects. Here, we detected three monoglycosylated and up to five diglycosylated gossypol isomers in the feces of H. armigera and H. virescens larvae fed on gossypol-supplemented diet. Candidate UDP-glycosyltransferase (UGT) genes of H. armigera were selected by microarray studies and in silico analyses and were functionally expressed in insect cells. In enzymatic assays, we show that UGT41B3 and UGT40D1 are capable of glycosylating gossypol mainly to the diglycosylated gossypol isomer 5 that is characteristic for H. armigera and is absent in H. virescens feces. In conclusion, our results demonstrate that gossypol is partially metabolized by UGTs via glycosylation, which might be a crucial step in gossypol detoxification in generalist herbivores utilizing cotton as host plant.


Assuntos
Glicosiltransferases/metabolismo , Gossipol/metabolismo , Proteínas de Insetos/metabolismo , Inseticidas/metabolismo , Mariposas/metabolismo , Animais , Gossipol/toxicidade , Inseticidas/toxicidade , Larva/enzimologia , Larva/crescimento & desenvolvimento , Larva/metabolismo , Mariposas/enzimologia , Mariposas/crescimento & desenvolvimento , Difosfato de Uridina/metabolismo
6.
Insect Biochem Mol Biol ; 53: 54-65, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25064010

RESUMO

The increasing resistance level of insect pest species is a major concern to agriculture worldwide. The cotton bollworm, Helicoverpa armigera, is one of the most important pest species due to being highly polyphagous, geographically widespread, and resistant towards many chemical classes of insecticides. We previously described the mechanism of fenvalerate resistance in Australian populations conferred by the chimeric cytochrome P450 monooxygenase CYP337B3, which arose by unequal crossing-over between CYP337B1 and CYP337B2. Here, we show that this mechanism is also present in the cypermethrin-resistant FSD strain from Pakistan. The Pakistani and the Australian CYP337B3 alleles differ by 18 synonymous and three nonsynonymous SNPs and additionally in the length and sequence of the intron. Nevertheless, the activity of both CYP337B3 proteins is comparable. We demonstrate that CYP337B3 is capable of metabolizing cypermethrin (trans- and especially cis-isomers) to the main metabolite 4'-hydroxycypermethrin, which exhibits no intrinsic toxicity towards susceptible larvae. In a bioassay, CYP337B3 confers a 7-fold resistance towards cypermethrin in FSD larvae compared to susceptible larvae from the Australian TWB strain lacking CYP337B3. Linkage analysis shows that presence of CYP337B3 accounts for most of the cypermethrin resistance in the FSD strain; up-regulation of other P450s in FSD plays no detectable role in resistance. The presence or absence of CYP337B3 can be easily detected by a simple PCR screen, providing a powerful tool to rapidly distinguish resistant from susceptible individuals in the field and to determine the geographical distribution of this resistance gene. Our results suggest that CYP337B3 evolved twice independently by unequal crossing-over between CYP337B2 and two different CYP337B1 alleles.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mariposas/efeitos dos fármacos , Mariposas/enzimologia , Piretrinas/farmacologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Bioensaio , Sistema Enzimático do Citocromo P-450/metabolismo , Larva/efeitos dos fármacos , Dados de Sequência Molecular , Mariposas/metabolismo , Paquistão , Isoformas de Proteínas
7.
Proc Natl Acad Sci U S A ; 109(38): 15206-11, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22949643

RESUMO

Worldwide, increasing numbers of insects have evolved resistance to a wide range of pesticides, which hampers their control in the field and, therefore, threatens agriculture. Members of the carboxylesterase and cytochrome P450 monooxygenase superfamilies are prominent candidates to confer metabolic resistance to pyrethroid insecticides. Both carboxylesterases and P450 enzymes have been shown to be involved in pyrethroid resistance in Australian Helicoverpa armigera, the noctuid species possessing by far the most reported resistance cases worldwide. However, specific enzymes responsible for pyrethroid resistance in field populations of this species have not yet been identified. Here, we show that the resistance toward fenvalerate in an Australian strain of H. armigera is due to a unique P450 enzyme, CYP337B3, which arose from unequal crossing-over between two parental P450 genes, resulting in a chimeric enzyme. CYP337B3 is capable of metabolizing fenvalerate into 4'-hydroxyfenvalerate, which exhibits no toxic effect on susceptible larvae; enzymes from the parental P450 genes showed no detectable fenvalerate metabolism. Furthermore, a polymorphic H. armigera strain could be bred into a susceptible line possessing the parental genes CYP337B1 and CYP337B2 and a resistant line possessing only CYP337B3. The exclusive presence of CYP337B3 in resistant insects of this strain confers a 42-fold resistance to fenvalerate. Thus, in addition to previously documented genetic mechanisms of resistance, recombination can also generate selectively advantageous variants, such as this chimeric P450 enzyme with an altered substrate specificity leading to a potent resistance mechanism.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/farmacologia , Resistência a Medicamentos , Lepidópteros/efeitos dos fármacos , Nitrilas/farmacologia , Piretrinas/farmacologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Sequência Conservada , Inibidores Enzimáticos/farmacologia , Epitopos/química , Heme/química , Inseticidas/farmacologia , Lepidópteros/metabolismo , Conformação Molecular , Dados de Sequência Molecular , Controle de Pragas , Isoformas de Proteínas , Homologia de Sequência de Aminoácidos , Temperatura
8.
Chem Biodivers ; 7(3): 722-35, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20232338

RESUMO

Cytochrome P450 monooxygenase CYP6G1 of Drosophila melanogaster was heterologously expressed in a cell suspension culture of Nicotiana tabacum. This in vitro system was used to study the capability of CYP6G1 to metabolize the insecticide methoxychlor (=1,1,1-trichloro-2,2-bis(4-methoxyphenyl)ethane, 1) against the background of endogenous enzymes of the corresponding non-transgenic culture. The Cyp6g1-transgenic cell culture metabolized 96% of applied methoxychlor (45.8 microg per assay) within 24 h by demethylation and hydroxylation mainly to trishydroxy and catechol methoxychlor (16 and 17%, resp.). About 34% of the metabolism and the distinct formation of trishydroxy and catechol methoxychlor were due to foreign enzyme CYP6G1. Furthermore, methoxychlor metabolism was inhibited by 43% after simultaneous addition of piperonyl butoxide (458 microg), whereas inhibition in the non-transgenic culture amounted to 92%. Additionally, the rate of glycosylation was reduced in both cultures. These results were supported by the inhibition of the metabolism of the insecticide imidacloprid (6; 20 microg, 24 h) in the Cyp6g1-transgenic culture by 82% in the presence of piperonyl butoxide (200 microg). Due to CYP6G1 being responsible for imidacloprid resistance of Drosophila or being involved in DDT resistance, it is likely that CYP6G1 conveys resistance to methoxychlor (1). Furthermore, treating Drosophila with piperonyl butoxide could weaken the observed resistance phenomena.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Drosophila/metabolismo , Inseticidas/metabolismo , Metoxicloro/metabolismo , Nicotiana/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Inseticidas/análise , Inseticidas/química , Metoxicloro/análise , Metoxicloro/química , Butóxido de Piperonila/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Pest Manag Sci ; 64(1): 65-73, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17912692

RESUMO

BACKGROUND: With the worldwide use of insecticides, an increasing number of pest insect species have evolved target-site or metabolism-based resistance towards some of these compounds. The resulting decreased efficacy of pesticides threatens human welfare by its impact on crop safety and further disease transmission. Environmental concentrations of some insecticides are so high that even natural populations of non-target, non-pest organisms such as the fruit fly Drosophila melanogaster Meig. have been selected for resistance. Cyp6g1-overexpressing strains of D. melanogaster are resistant to a wide range of chemically diverse insecticides, including DDT and imidacloprid. However, up to now there has been no evidence that the CYP6G1 enzyme metabolises any of these compounds. RESULTS: Here it is shown, by heterologous expression in cell suspension cultures of Nicotiana tabacum L. (tobacco), that CYP6G1 is capable of converting DDT (20 microg per cell culture assay) by dechlorination to DDD (18% of applied amount in 48 h), and imidacloprid (400 microg) mainly by hydroxylation to 4-hydroxyimidacloprid and 5-hydroxyimidacloprid (58 and 19% respectively in 48 h). CONCLUSION: Thus, the gap between the supposed resistance gene Cyp6g1 and the observed resistance phenomenon was closed by the evidence that CYP6G1 is capable of metabolising at least two insecticides.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , DDT/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Imidazóis/metabolismo , Nicotiana/citologia , Nitrocompostos/metabolismo , Animais , Animais Geneticamente Modificados , Células Cultivadas , DDT/química , Imidazóis/química , Resistência a Inseticidas , Inseticidas/metabolismo , Estrutura Molecular , Neonicotinoides , Nitrocompostos/química , Plantas Geneticamente Modificadas
10.
Chem Biodivers ; 3(8): 878-96, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17193320

RESUMO

Transgenic tobacco-cell-suspension cultures expressing separately the human cytochrome P450 monooxygenases CYP1A1, CYP1A2, and CYP3A4 were utilized to study the biotransformation of the 14C-labelled insecticide carbaryl (=naphthalen-1-yl methylcarbamate). The resulting data were compared to similar data from the corresponding non-transformed (NT) tobacco-cell culture and commercially available membrane preparations (Bactosomes) of genetically modified bacteria separately containing the same human P450s. A rapid conversion rate of carbaryl was observed with the CYP1A1 and CYP1A2 cells, where only 49.7 and 0.2% of applied carbaryl (1 mg/l), respectively, remained after 24 h, as compared to 77.7% in the non-transformed culture. Unexpectedly, the corresponding results obtained from the CYP3A4 cultures were not definite. With 25 mg/l of carbaryl and 96 h of incubation, it was proven that the insecticide is also substrate of CYP3A4. This finding was supported by GC/EI-MS analysis of the primary metabolite pattern produced by the isozyme. This consisted of naphthalene-1-ol, N-(hydroxymethyl)carbaryl, 4-hydroxycarbaryl, and 5-hydroxycarbaryl, whereas the main product in non-transformed cells was N-(hydroxymethyl)carbaryl. Data obtained from the CYP1A1, CYP1A2, or CYP3A4 Bactosomes agreed with those of the P450-transgenic tobacco cells. Problems with GC/EI-MS analysis of carbaryl and its metabolites are discussed.


Assuntos
Carbaril/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Inseticidas/metabolismo , Nicotiana/metabolismo , Carbaril/química , Carbaril/isolamento & purificação , Radioisótopos de Carbono/química , Extratos Celulares , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450/genética , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Hidrólise , Inseticidas/química , Inseticidas/isolamento & purificação , Estrutura Molecular , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...